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Abstract—We use a dataset of Amazon Product reviews and 

their polarity to experiment with different specifications for 

sequential neural networks using TensorFlow. We begin by 

experimenting with a relatively small sample of observations, for 

practical reasons of time. A benchmark of accuracy/time is set 

using textblob, a ‘black box’ python module for sentiment analysis. 

We explore many combinations of text embedding models, 

activation functions, loss functions, and number of epochs. We 

record and compare the computational speed and prediction 

accuracy and use these metrics to identify a preferred model. 

Finally, we run the preferred model one final time on the full 

dataset and evaluate its performance, with the goal of exceeding 

the performance by textblob. 

 
Index Terms—machine learning, neural networks, text 

embedding, sentiment analysis 

 

I. INTRODUCTION 

ENTIMENT analysis on text is a fairly well-tread subfield of 

machine learning. Machines are not as good at reading as 

humans, yet, but for narrowly defined tasks, such as 

determining if a paragraph is expressing positive or negative 

sentiment, there are open-source products that will solve this 

puzzle with startling accuracy despite minimal input from the 

user. That said, there is still a demand for applied data science, 

in that the most accurate sentiment analysis requires some 

tweaking and experimentation on the part of the user. In this 

project, we engage in this process of taking a base model and 

refining it for the purposes of time and accuracy. 

II. TASK DESCRIPTION 

Our task is to correctly predict the sentiment polarity of 

Amazon product reviews using a sequential neural network, 

while minimizing the computational time required.  

 

A. Dataset Description 

We used the Amazon reviews polarity dataset created by 

Xiang Zheng at New York University. The original data 

 
Submitted for review on 3/17/2022 as a final project in ECON 425 Machine 

Learning I, a course in the Master’s in Quantitative Economics Program at 

UCLA. 
Alex Hong (e-mail: hong2021@ucla.edu), Jean Young Ghim (e-mail: 

jghim@ucla.edu), and Kenneth Foster (e-mail: kfoster150@ucla.edu) are all 

included 35 million reviews as recent as March 2013. We used 

a subset of 3.6 million training samples and 400 thousand 

testing samples available on Kaggle, posted by Kritanjali Jain. 

Labels are delineated like so: 1 to 2 star reviews were coded as 

negative, 4 to 5 as positive. Reviews with 3 stars were not 

included. The data is balanced, with an equal amount of positive 

and negative reviews in both the training and testing set. The 

features are the text reviews written by users to accompany the 

star ratings. 

B. Benchmark 

Textblob, as an useful sentiment analysis tool is built on 

wordnet, based on a dataset of lexicon-mapped adjectives. It is 

a python library for Natural Language Processing. As a general 

use tool, it is extremely easy to use. A beginner in the python 

coding language could run it with minimal difficulties. The 

algorithm is simple. The polarity is calculated on the sample 

mean of all the adjectives, where x is from lexicon and n is the 

number of words. The predefined lexicon sentiment dictionary 

has scores and weights for adjectives, so that it generates 

polarity for sentences automatically. The polarity ranges from -

1 to 1, with -1 meaning a negative sentiment and 1 meaning a 

positive sentiment. However, we show that its simplicity comes 

at a major cost to accuracy. It can only analyze the words that 

have been existed in its dictionary and ignore the words it 

doesn’t know. And it can’t distinguish the difference between 

tones like irony. Therefore, we decided to build our own NPL 

model, a tuned neural network in the TensorFlow framework 

that can massively outperform it in both accuracy and efficiency. 

 Given our full dataset, Textblob was able to make correct 

binary predictions approximately 66% of the time and took 

approximately 5 minutes to complete. This result is listed in 

Table Ⅻ, where it is also compared to the best TensorFlow 

model we were able to design. 

C. Base Experimental Model (TensorFlow) 

The base model is a sequential neural network consisting of 

three layers: 
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1) Input Layer 

The first layer is an input layer which uses one of three text 

embedding models imported from TensorFlow Hub. More 

detail on the text embedders in Section V. 

 

2) Hidden Layer 

The second layer is a hidden dense layer, consisting of 8 or 

16 nodes. The activation function is ReLU or sigmoid, 

defined respectively as 

 

ReLU:   𝑦𝑖 = max(0, xi)                 (1) 

Sigmoid:  𝑦𝑖 =
1

1+e−xi
                   (2) 

 

3) Output Layer 

The third layer is a dense layer of one node, to output the 

prediction value. 

 

When compiled, one of three optimizers are used. These are 

Stochastic Gradient Descent (SGD), Root Mean Squared 

Propagation (RMSProp), or Adaptive Moment Estimation 

(ADAM). We will give a brief review of each optimizer. SGD 

updates all the parameters for each training feature and label 

individually. This contrasts with the generic Gradient Descent, 

which computes the gradient of the cost function with respect 

to the parameters for the whole learning set (or a preset batch). 

 

θ = θ-α▽J(θ;x(i),y(i))                 (3) 

 

Where θ is the current estimate of the parameter, 𝑎 is the 

learning rate, 𝑥𝑖 and 𝑦𝑖  are the features and labels, 

respectively. 

 

A distinct feature of RMSProp and ADAM is that they 

change the learning rate as computation progresses rather than 

using a fixed rate. RMSProp takes a decaying average of all 

past squared gradients, in a recursive fashion: 

 

θ𝑡 = θ𝑡−1 −
𝜂

√𝐸[𝑔2]𝑡+𝜖
𝑔𝑡, where      

𝐸[𝑔2]𝑡 = 𝛾𝐸[𝑔2]𝑡−1 + (1 − 𝛾)𝑔2             (4) 

 

 

Where t is a time index, 𝑔 is a gradient, 𝜂 is an adaptive 

learning rate, and 𝛾 is the “forgetting” factor. 

 

Finally, ADAM uses the same decaying average as 

RMSProp as well as a momentum gradient descent. 

 

θ𝑡 = θ𝑡−1 −
𝜂

√�̂�𝑡+𝜖
�̂�𝑡  

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡  

𝜈𝑡 = 𝛽2𝜈𝑡−1 + (1 − 𝛽2)𝑔𝑡
2  

�̂�𝑡 =
𝑚𝑡

1−𝛽1
𝑡  

�̂�𝑡 =
𝜈𝑡

1−𝛽2
𝑡                       (5) 

 

Where m is the decaying average of past gradients, and v is 

the decaying average of past squared gradients. �̂� and �̂� are 

momentum terms. 

 

We also experiment with three loss functions, Binary Cross 

Entropy (BCE), Mean Squared Error (MSE), and Mean 

Absolute Error (MAE). As we’ll see in later results, BCE was 

the most appropriate loss function for this kind of problem, but 

we experimented with the two others for thoroughness. It 

takes the following format: 

 

F(θ)=−
1

𝑚
(∑ 𝑦𝑖𝑙𝑜𝑔ℎθ(𝑥𝑖) + (1 − 𝑦𝑖)log (1 − ℎθ(𝑥𝑖)))     (6) 

  

Where ℎθ(𝑥𝑖) is the probability that 𝑦𝑖 = 1. 

 MSE and MAE are very similar in specification and result, 

and take the following formats: 

 

MSE: F(θ)=
1

2𝑚
∑(𝑦𝑖 − 𝑓θ(𝑥𝑖))

2
               (7) 

MAE: F(θ)=
1

𝑚
∑|𝑦𝑖 − 𝑓θ(𝑥𝑖)|                (8) 

 

Each is meant to create a representative figure of the overall 

distance between the true values of 𝑦𝑖  and its predicted value, 

𝑓θ(𝑥𝑖). The main difference is that one corrects for negative 

values by squaring the distance, the other by taking the 

absolute value. 

D. Evaluation Metrics 

Each specification was evaluated by the following metrics: 

 

1) Accuracy 

A ratio of the number of correctly labeled test predictions 

and the total number of test examples 

2) Precision 

For each classification c, a ratio of the number of labels 

correctly predicted as c and the total number of labels 

predicted as c, correctly or incorrectly. 

3) Recall 

For each classification c, a ratio of the number of labels 

correctly predicted as c and the total number of labels whose 

ground-truth label is c 

4) Computation Time 

Given a set of specifications, the amount of time in seconds 

it takes for the sequential neural network to be instantiated, 

fit to training data, validated, and finally tested. 

III. MAJOR CHALLENGES AND SOLUTIONS 

Our most pervasive challenge was managing the size of the 

dataset, the computational cost of running many neural 

network models, and the time required for our models to finish 

running. To overcome this, we subset data, utilized 

programming loops to try several different specifications at 

once, and at point had to reduce the number of hidden layer 

neurons. 

During the experimental phase, we used a subset of 36,000 

training examples and 4000 test samples while running 

various experiments and did not estimate a model with the full 

dataset until the end of our experimentation, when we believed 

we had identified the most accurate and efficient specification. 

We relied heavily on pythonic ‘loops’ to iterate through 

different combinations of text embedder, activation functions, 

optimizers, number of epochs and batch length. Rather than 

evaluate each specification individually, summary statistics of 
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performance was saved separately so that all model attempts 

could be compared simultaneously. 

At the beginning of the choosing loss functions, we came up 

with three loss functions that are binary crossentrophy, mean 

squared error and cosine similarity. However, we found out 

cosine similarity can not be applied on polarity since the 

interval is [0,1] instead of [-1,1]. By switching the loss function 

to mean absolute error that measures the absolute average 

distance between the real data and predicted data, we also have 

a good comparison between accuracy under mean squared error 

and mean absolute error 
When evaluating models based on the final input layer, with 

128 dimensions, we found that our computing platform (Google 

Colab with active GPU) could not complete the estimation. We 

remedied this by reducing the number of neurons in the hidden 

layer by half, from 16 to 8. 

Another major challenge is to match the results. For each 

time we run the models, the result tables change drastically by 

the rank based on accuracy. It’s nearly unpredictable to assume 

which combination of activation functions and optimizer will 

get the highest accuracy. In this paper, we analyzed using our 

last results' numbers. This might be included in the future work, 

which is to find a robust best model. 

 

IV. MAJOR RESULTS & ANALYSIS 

Each author used one of three pre-specified text embedding 

models as a starting point. From there, the respective author 

was responsible for experimenting further and interpreting 

their results, with any specifications subject to change other 

than the text embedder they started with. 

A. google/nnlm-en-dim50 

This model maps from text to 50-dimensional embedding 

vectors. It takes a batch of sentences in a 1-D tensor of strings 

as input and preprocesses its input by splitting into spaces. 

The analysis results with this model were as follows. Firstly, 

Binary Cross Entropy model performed much better than the 

other two loss functions. The Binary Cross Entropy model’s 

best accuracy was 0.84228, but the others' bests were 0.70053 

and 0.73719. The results from the two other loss functions were 

about the same because they used the same penalty mechanism, 

the distance between the real value and predicted value, even 

though one (Mean Squared Error) is about the squared term the 

other (Mean Absolute Error) is about the absolute term. On the 

result tables, these two models had especially low precision 

values for 1 and recall values for 0, which meant there were a 

lot of data, ground truth was 0 but predicted 1. This result 

confirmed that Binary Cross Entropy function appropriated 

more in classification problems because it gave penalties 

infinity when model’s prediction was totally different class 

from the original data.  

Secondly, for the best combination of Activation functions 

and Optimizers, there were no big differences in terms of 

accuracy. However, about time, the model with SGD optimizer 

shows good results overall. Because SGD does one update at a 

time, it doesn’t have the redundancy. However, we need to 

watch out to use this model because it is generally noisier than 

typical Gradient Descent as it usually takes a higher number of 

iterations to reach the minimum. 

Because this model is our base model, I tried different batch 

sizes and epochs with Binary Cross Entropy loss function. I 

didn’t try this on other loss functions’ models because other 

models’ accuracies were too low to beat the Binary Cross 

Entropy loss functions’ results, and I couldn’t see a strong 

upward trend on the validation accuracy that I could assure the 

accuracy would go up with adding more iterations.  I wanted to 

make sure whether it didn’t converge because of lack of 

repetition. However, when I decreased the batch size 512 to 300, 

the best accuracy became worse, and the result was the same 

when I increased epochs 5 to 7 as can be seen in Table Ⅰ~Ⅲ. 

This could be caused by overfitting. In many cases among with 

smaller batch size and more epochs, the model’s validation 

accuracy decreased as the epoch increased. 

B. google/nnlm-en-dim50-with-normalization 

As a continuation of the previous layer, this layer is based on 

NNLM with two hidden layers. Same with the 50-dimensional 

layer, it takes a batch of sentences in a 1-D tensor of strings as 

input. With normalization, it preprocesses its input by removing 

punctuation and then splitting on spaces. In each model, the first 

10000 data are used for validation and the rest are used for 

training the models. Based on the experiments from the last 

layer, the epochs is fixed to 5 and batch size is fixed to 512. 

    The BinaryCrossentropy model performed the best among all 

three loss functions with the highest accuracy equals to 86.09% 

and the lowest accuracy equals to 82.85%. Under the 

BinaryCrossentropy loss function, sigmoid and rmsprop is the 

best combination with the high accuracy and highest precision 

for polarity = 0. The second loss function is the mean squared 

error. Sigmoid and rmsprop is still the best combination with 

accuracy equals to 63.36%. The mean absolute error is the last 

loss function that is trained. With the combination of relu and 

adam, the accuracy is fairly low. Across all models, optimizer 

sgd always gets the fastest running time. 

C. google/nnlm-en-dim128-with-normalization 

As described in its documentation and hinted at in its name, 

this layer maps text to vectors of 128 dimensions. This 

embedder was originally trained on the English Google News 

200B corpus, using a Neural Net Language Model with three 

hidden layers. The ‘normalization’ refers to a pre-processing 

step where all punctuation is removed from the input text. 

In each of the following models, half of the training examples 

originally provided are used purely for training, the other half 

for validation. The test examples remain as such and are not 

subset further than described in Section III. 

Beyond the input layer, the first model attempted has a single 

hidden layer of 16 nodes, each with a ReLU activation function, 

and a single node output layer. When compiled, it uses the 

ADAM optimizer and a binary cross-entropy loss function. The 

model fit estimation was done over 20 epochs, with a batch size 

of 500 examples. 

The number of epochs in this first experiment turned out to 

be far too high. While the training accuracy continued to 

improve until it was indistinguishably close to 1, the validation 
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accuracy peaked after only 3 epochs at approximately 85%. The 

final test accuracy was even less, around 81%, which was clear 

evidence of overfitting. I suspect the relatively high 

dimensionality of the input layer is what makes this 

specification so prone to overfitting, but this is only an educated 

guess.  

The next set of models attempted used only 8 nodes in its 

layers and 10 epochs, for two reasons. Firstly, was to reduce the 

overfitting issue in the first attempt, and secondly because 

repeatedly running models with 16 hidden layer nodes and 20 

epochs would often cause our system (a Google Colab notebook 

with GPU enabled) to crash. 

In this step, the ReLU activation function was paired with the 

three different optimizers: ADAM, RMSProp, and SGD. In 

terms of predictive power (accuracy, precision, and recall), all 

three specifications are very similar, with a slight edge to 

RMSProp with a 5 percentage point lead in accuracy. The most 

striking difference was in speed: ADAM was by far the slowest, 

taking 104 seconds to complete, while RMSProp and SGD took 

41 and 31 seconds, respectively.  

With these results in mind, the same three optimizers were 

paired with the sigmoid activation function in the hidden layer. 

Results were similar to what was observed with ReLU, though 

slightly less accurate, with the one exception that the SGD 

optimizer performed much poorer in terms of accuracy, enough 

to overshadow its 10 second lead in time to complete. The full 

results for this and the previous set of models are displayed in 

Table IX. 

Finally, the previous experiments were repeated, with epochs 

limited further to only 5. Performance was greatly reduced. 

Predictions using the sigmoid activation function were, quite 

literally, useless, and no better than simply guessing. These 

results can be reviewed in Table X. 

 

V. CONCLUSION AND FUTURE WORKS 

Out of the three input layers, the middle one, 50-dimension 

with normalization showed the best result. From this result, we 

could say that compared to simple model, the model with 

normalization worked better. However, because 128-dimension 

with normalization was too complicated, it could not show 

better results than 50 dimensional models. 

Among all our trials, we chose the best model with a 50-

dimension with normalization input layer, 16 nodes in its 

hidden layer (each with sigmoid activation), Binary Cross 

Entropy as a loss function, SGD as the optimizer, 5 epochs, and 

512 batch size. To decide the best model, first, we saw the 

accuracy. There were five models with similar accuracy, around 

0.86. These can be reviewed in Table XI Among them, we 

chose the model with sigmoid activation and SGD optimization. 

While its accuracy was only the second highest, this was 

balanced out by its efficiency. There was only a 0.005 

difference in accuracy, with a 9% decrease in the time to run. 

    Using this best model, we run the whole data set, not the part 

of it, 3,600,000. data for training and 400,000 data for testing. 

In the end, our model’s accuracy was 0.766, which was lower 

than expected. We expected to see at least above 80% because 

all our small sample tested models showed over 85%. This 

could be caused by overfitting because we used much more 

training samples in this case.  

 Finally, we compared our results with textblob’s one. We 

found out that our model worked much better than the textblob 

in terms of accuracy. textblob’s accuracy for our full test sets 

was only 0.655. We could see that fine tuning with various 

parameters could bring better results than automatic models. 

Regarding time, textblob was better than our model. However, 

this result could be expected because compared to our model, 

textblob didn’t spend time to training the model, it is pretrained 

and therefore didn’t have to deal with 3,600,000 data. A 

detailed comparison is in Table XII 

 

 After finishing our analysis, there were several things that we 

wanted to analyze more in the future. Firstly, during the 

analysis, we could see that our best model changed whenever 

we run the codes. We tried to fix our train and test data when 

we made small sample using random_state. However, still the 

model picked up different data for fulfilling batch size and 

epochs in every running. Also, the accuracy differences 

between each model were small so it could be easily exceeded. 

Therefore, for the further work, we can focus on making more 

robust best model. 

 Secondly, when we used MSE and MAE loss functions, we 

could see that especially precision for 1 and recall for 0 showed 

low value. In this analysis, we didn’t focus on this because our 

focus was trying to find the best model with high accuracy. 

However, for further research, we can try different thresholds 

for our activation functions to get balanced precision and recall 

values.  

 Thirdly, in this analysis, we fixed many other options we 

could try to set boundaries for our research, for instance, the 

number of nodes on the hidden layer and the number of layers. 

For further research, we can try other combinations for these. 

In this analysis, we used 16 nodes on the hidden layer and could 

see that our model was fast overfitted with 5 epochs and 512 

batch sizes. If we change the number of nodes to a smaller size 

overfitted as we did in the 128 dim model, then our model 

would slowly be. In the contrast, if we add one more layer, then 

we should decrease epochs or increase the batch size to prevent 

overfitting (If we have same number of epochs, then smaller 

batch size would lead more iterations). Another option that we 

can consider is adding layers with a dropout rate. Also, in this 

analysis, we didn’t touch the important hyperparameter, 

learning rate. We could use this parameter later to do more fine 

tuning. 

 Lastly, we expected our model’s final accuracy to increase 

more because training data for this model became 1,000 times 

bigger. However, the accuracy decreased in contrast. For the 

next analysis, we could focus on finding the clear reason for the 

accuracy difference and why it even decreased. 
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VI. TABLES 

TABLE I 

RESULT FROM NNLM-EN-DIM50/ 

(NODES=16, LOSS=BINARYCROSSENTROPY , EPOCHS = 5, BATCH_SIZE=512) 

Activation Optimizer Accuracy 
Precision Recall 

Time 
0 1 0 1 

Sigmoid adam 0.842 0.85 0.84 0.84 0.86 34.0 

Relu rmsprop 0.841 0.85 0.84 0.84 0.85 15.8 
Sigmoid rmsprop 0.841 0.85 0.83 0.83 0.85 18.6 

Relu adam 0.839 0.85 0.83 0.82 0.85 32.3 

Sigmoid  sgd 0.826 0.82 0.83 0.85 0.81 13.8 
Relu sgd 0.800 0.80 0.81 0.81 0.79 16.1 

 

TABLE Ⅱ 

RESULT FROM NNLM-EN-DIM50/ 
(NODES =16, LOSS=BINARYCROSSENTROPY , EPOCHS = 5, BATCH_SIZE=300) 

Activation Optimizer Accuracy 
Precision Recall 

Time 
0 1 0 1 

Sigmoid adam 0.835 0.84 0.83 0.84 0.83 52.3 

Relu adam 0.833 0.84 0.83 0.83 0.84 35.5 
Relu sgd 0.831 0.84 0.83 0.83 0.84 15.0 

Sigmoid rmsprop 0.831 0.84 0.82 0.82 0.84 31.6 

Sigmoid sgd 0.831 0.84 0.82 0.82 0.84 17.5 
Relu rmsprop 0.826 0.83 0.82 0.82 0.84 29.7 

 
TABLE Ⅲ 

RESULT FROM NNLM-EN-DIM50/ 
(NODES =16, LOSS=BINARYCROSSENTROPY , EPOCHS = 7, BATCH_SIZE=512) 

Activation Optimizer Accuracy 
Precision Recall 

Time 
0 1 0 1 

Sigmoid adam 0.833 0.84 0.83 0.83 0.84 31.7 

Sigmoid sgd 0.831 0.83 0.83 0.84 0.83 17.5 

sigmoid  rmsprop 0.828 0.83 0.83 0.83 0.83 19.0 
relu sgd 0.828 0.83 0.83 0.83 0.83 14.7 

relu adam 0.826 0.83 0.82 0.82 0.83 29.0 

Relu rmsprop 0.820 0.82 0.82 0.83 0.81 21.0  

 
TABLE Ⅳ 

RESULT FROM NNLM-EN-DIM50/ 

(NODES =16, LOSS=MEANSQUAREDERROR , EPOCHS = 5, BATCH_SIZE=512) 

Activation Optimizer Accuracy 
Precision Recall 

Time 
0 1 0 1 

Sigmoid rmsprop 0.701 0.93 0.63 0.44 0.97 15.3 
Relu rmsprop 0.649 0.91 0.59 0.33 0.97 21.4 

Sigmoid adam 0.633 0.95 0.58 0.28 0.99 31.5 

Relu sgd 0.618 0.96 0.57 0.25 0.99 13.0 
Relu adam 0.617 0.92 0.57 0.26 0.98 25.7 

Sigmoid sgd 0.611 0.97 0.56 0.23 0.99 16.0 

 

TABLE Ⅴ 
RESULT FROM NNLM-EN-DIM50/ 

(NODES =16, LOSS=MEANABSOLUTEERROR , EPOCHS = 5, BATCH_SIZE=512) 

Activation Optimizer Accuracy 
Precision Recall 

Time 
0 1 0 1 

Relu rmsprop 0.737 0.89 0.67 0.54 0.93 18.9 
Relu sgd 0.648 0.93 0.59 0.32 0.97 15.8 

Sigmoid adam 0.641 0.96 0.58 0.3 0.99 25.6 

Sigmoid sgd 0.635 0.97 0.58 0.28 0.99 13.3 
Relu adam 0.607 0.93 0.56 0.23 0.98 29.1 

Sigmoid rmsprop 0.603 0.93 0.56 0.22 0.98 18.1 

 

TABLE Ⅵ 

RESULT FROM NNLM-EN-DIM50-WITH-NORMALIZATION/ 
(NODES =16, LOSS= BINARYCROSSENTROPY, EPOCHS = 5, BATCH_SIZE=512) 

Activation Optimizer Accuracy 
Precision Recall 

Time 
0 1 0 1 

Sigmoid rmsprop 0.861 0.86 0.86 0.86 0.86 19.2 

Sigmoid adam 0.860 0.82 0.86 0.86 0.86 29.0 
Relu rmsprop 0.860 0.85 0.87 0.87 0.84 15.8 

Relu adam 0.857 0.84 0.87 0.88 0.83 31.6 

Sigmoid  sgd 0.855 0.85 0.86 0.86 0.85 14.3 
Relu sgd 0.829 0.79 0.88 0.90 0.76 16.3 

TABLE Ⅶ 
RESULT FROM NNLM-EN-DIM50-WITH-NORMALIZATION/ 

(NODES =16, LOSS= MEANSQUAREDERROR , EPOCHS = 5, BATCH_SIZE=512) 

Activation Optimizer Accuracy 
Precision Recall 

Time 
0 1 0 1 

Sigmoid rmsprop 0.634 0.98 0.58 0.28 0.99 21.4 
Relu sgd 0.620 0.97 0.57 0.25 0.99 21.1 

Sigmoid adam 0.620 0.98 0.57 0.25 0.99 23.2 

Relu adam 0.603 0.97 0.56 0.22 0.99 26.5 
Relu rmsprop 0.599 0.96 0.55 0.21 0.99 21.4 

Sigmoid sgd 0.542 0.98 0.52 0.09 1.00 16.4 

 
TABLE Ⅷ 

RESULT FROM NNLM-EN-DIM50-WITH-NORMALIZATION/ 
(NODES =16, LOSS= MEANABSOLUTEERROR , EPOCHS = 5, BATCH_SIZE=512) 

Activation Optimizer Accuracy 
Precision Recall 

Time 
0 1 0 1 

Relu adam 0.666 0.95 0.60 0.35 0.98 29.3 

Relu sgd 0.635 0.95 0.58 0.29 0.98 16.1 

Sigmoid adam 0.630 0.97 0.57 0.27 0.99 26.0 
Sigmoid sgd 0.622 0.98 0.57 0.25 0.99 21.1 

Sigmoid rmsprop 0.614 0.97 0.56 0.24 0.99 21.3 

Relu rmsprop 0.609 0.95 0.56 0.23 0.99 15.7 

 
TABLE Ⅸ 

RESULT FROM NNLM-EN-DIM128-WITH-NORMALIZATION/ 

(NODES =8, LOSS= BINARYCROSSENTROPY, EPOCHS = 10, BATCH_SIZE=500) 

Activation Optimizer Accuracy 
Precision Recall 

Time 
0 1 0 1 

Relu rmsprop 0.802 0.82 0.83 0.84 0.81 41 
Sigmoid rmsprop 0.790 0.84 0.83 0.82 0.84 42 

Relu adam 0.760 0.83 0.83 0.83 0.83 104 

Relu sgd 0.752 0.82 0.82 0.82 0.82 32 
Sigmoid adam 0.717 0.84 0.85 0.85 0.84 103 

Sigmoid sgd 0.601 0.84 0.83 0.83 0.84 32 

 
TABLE Ⅹ 

RESULT FROM NNLM-EN-DIM128-WITH-NORMALIZATION/ 

(NODES =8, LOSS= BINARYCROSSENTROPY, EPOCHS = 5, BATCH_SIZE=500) 

Activation Optimizer Accuracy 
Precision Recall 

Time 
0 1 0 1 

Sigmoid adam 0.502 0.50  1.0 0.0 49 

Sigmoid rmsprop 0.502 0.50  1.0 0.0 31 
Sigmoid sgd 0.498  0.50 0.0 1.0 31 

Relu adam 0.499 0.82 0.86 0.87 0.81 44 

Relu rmsprop 0.752 0.85 0.84 0.83 0.85 31 
Relu sgd 0.616 0.85 0.79 0.77 0.86 31 

 
TABLE Ⅺ 

THE MODELS WITH THE HIGHEST ACCURACY 
(ALL FROM NNLM-EN-DIM50/2 AND BINARYCROSSENTROPY LOSS FUNCTION) 

Activation Optimizer Epochs Batchsize Accuracy Time 

Sigmoid rmsprop 5 512 0.861 19.2 

Sigmoid adam 5 512 0.860 29.0 

Relu rmsprop 5 512 0.860 15.8 
Relu adam 5 512 0.857 31.6 

Sigmoid  sgd 5 512 0.855 14.3 

 
TABLE Ⅻ 

FINAL COMPARISON 

  Accuracy 
Precision Recall Time 

(minutes) 0 1 0 1 

TextBlob  0.655 -- -- -- -- 4.73 

TensorFlow  0.766 0.77 0.77 0.77 0.76 13.4 

TENSORFLOW FINAL SPECIFICATION 

ACTIVATION: SIGMOID, OPTIMIZER: SGD, EMBED: NNLM-EN-DIM50-WITH-
NORMALIZATION,  NODES =16, LOSS= BINARYCROSSENTROPY, EPOCHS = 5, 

BATCH_SIZE=512 
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1) Writer 
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