
 1

Abstract—We use a dataset of Amazon Product reviews and

their polarity to experiment with different specifications for

sequential neural networks using TensorFlow. We begin by

experimenting with a relatively small sample of observations, for

practical reasons of time. A benchmark of accuracy/time is set

using textblob, a ‘black box’ python module for sentiment analysis.

We explore many combinations of text embedding models,

activation functions, loss functions, and number of epochs. We

record and compare the computational speed and prediction

accuracy and use these metrics to identify a preferred model.

Finally, we run the preferred model one final time on the full

dataset and evaluate its performance, with the goal of exceeding

the performance by textblob.

Index Terms—machine learning, neural networks, text

embedding, sentiment analysis

I. INTRODUCTION

ENTIMENT analysis on text is a fairly well-tread subfield of

machine learning. Machines are not as good at reading as

humans, yet, but for narrowly defined tasks, such as

determining if a paragraph is expressing positive or negative

sentiment, there are open-source products that will solve this

puzzle with startling accuracy despite minimal input from the

user. That said, there is still a demand for applied data science,

in that the most accurate sentiment analysis requires some

tweaking and experimentation on the part of the user. In this

project, we engage in this process of taking a base model and

refining it for the purposes of time and accuracy.

II. TASK DESCRIPTION

Our task is to correctly predict the sentiment polarity of

Amazon product reviews using a sequential neural network,

while minimizing the computational time required.

A. Dataset Description

We used the Amazon reviews polarity dataset created by

Xiang Zheng at New York University. The original data

Submitted for review on 3/17/2022 as a final project in ECON 425 Machine

Learning I, a course in the Master’s in Quantitative Economics Program at

UCLA.
Alex Hong (e-mail: hong2021@ucla.edu), Jean Young Ghim (e-mail:

jghim@ucla.edu), and Kenneth Foster (e-mail: kfoster150@ucla.edu) are all

included 35 million reviews as recent as March 2013. We used

a subset of 3.6 million training samples and 400 thousand

testing samples available on Kaggle, posted by Kritanjali Jain.

Labels are delineated like so: 1 to 2 star reviews were coded as

negative, 4 to 5 as positive. Reviews with 3 stars were not

included. The data is balanced, with an equal amount of positive

and negative reviews in both the training and testing set. The

features are the text reviews written by users to accompany the

star ratings.

B. Benchmark

Textblob, as an useful sentiment analysis tool is built on

wordnet, based on a dataset of lexicon-mapped adjectives. It is

a python library for Natural Language Processing. As a general

use tool, it is extremely easy to use. A beginner in the python

coding language could run it with minimal difficulties. The

algorithm is simple. The polarity is calculated on the sample

mean of all the adjectives, where x is from lexicon and n is the

number of words. The predefined lexicon sentiment dictionary

has scores and weights for adjectives, so that it generates

polarity for sentences automatically. The polarity ranges from -

1 to 1, with -1 meaning a negative sentiment and 1 meaning a

positive sentiment. However, we show that its simplicity comes

at a major cost to accuracy. It can only analyze the words that

have been existed in its dictionary and ignore the words it

doesn’t know. And it can’t distinguish the difference between

tones like irony. Therefore, we decided to build our own NPL

model, a tuned neural network in the TensorFlow framework

that can massively outperform it in both accuracy and efficiency.

 Given our full dataset, Textblob was able to make correct

binary predictions approximately 66% of the time and took

approximately 5 minutes to complete. This result is listed in

Table Ⅻ, where it is also compared to the best TensorFlow

model we were able to design.

C. Base Experimental Model (TensorFlow)

The base model is a sequential neural network consisting of

three layers:

Master’s Candidates in the Quantitative Economics program at the University

of California, Los Angeles.

Textblob vs TensorFlow: Amazon Product

Review Sentiment Analysis with Neural

Networks (March 2022)

Alex Hong, Jean Young Ghim, And Kenneth Foster, Master’s in Quantitative Economics, UCLA

S

 2

1) Input Layer

The first layer is an input layer which uses one of three text

embedding models imported from TensorFlow Hub. More

detail on the text embedders in Section V.

2) Hidden Layer

The second layer is a hidden dense layer, consisting of 8 or

16 nodes. The activation function is ReLU or sigmoid,

defined respectively as

ReLU: 𝑦𝑖 = max(0, xi) (1)

Sigmoid: 𝑦𝑖 =
1

1+e−xi
 (2)

3) Output Layer

The third layer is a dense layer of one node, to output the

prediction value.

When compiled, one of three optimizers are used. These are

Stochastic Gradient Descent (SGD), Root Mean Squared

Propagation (RMSProp), or Adaptive Moment Estimation

(ADAM). We will give a brief review of each optimizer. SGD

updates all the parameters for each training feature and label

individually. This contrasts with the generic Gradient Descent,

which computes the gradient of the cost function with respect

to the parameters for the whole learning set (or a preset batch).

θ = θ-α▽J(θ;x(i),y(i)) (3)

Where θ is the current estimate of the parameter, 𝑎 is the

learning rate, 𝑥𝑖 and 𝑦𝑖 are the features and labels,

respectively.

A distinct feature of RMSProp and ADAM is that they

change the learning rate as computation progresses rather than

using a fixed rate. RMSProp takes a decaying average of all

past squared gradients, in a recursive fashion:

θ𝑡 = θ𝑡−1 −
𝜂

√𝐸[𝑔2]𝑡+𝜖
𝑔𝑡, where

𝐸[𝑔2]𝑡 = 𝛾𝐸[𝑔2]𝑡−1 + (1 − 𝛾)𝑔2 (4)

Where t is a time index, 𝑔 is a gradient, 𝜂 is an adaptive

learning rate, and 𝛾 is the “forgetting” factor.

Finally, ADAM uses the same decaying average as

RMSProp as well as a momentum gradient descent.

θ𝑡 = θ𝑡−1 −
𝜂

√�̂�𝑡+𝜖
�̂�𝑡

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡

𝜈𝑡 = 𝛽2𝜈𝑡−1 + (1 − 𝛽2)𝑔𝑡
2

�̂�𝑡 =
𝑚𝑡

1−𝛽1
𝑡

�̂�𝑡 =
𝜈𝑡

1−𝛽2
𝑡 (5)

Where m is the decaying average of past gradients, and v is

the decaying average of past squared gradients. �̂� and �̂� are

momentum terms.

We also experiment with three loss functions, Binary Cross

Entropy (BCE), Mean Squared Error (MSE), and Mean

Absolute Error (MAE). As we’ll see in later results, BCE was

the most appropriate loss function for this kind of problem, but

we experimented with the two others for thoroughness. It

takes the following format:

F(θ)=−
1

𝑚
(∑ 𝑦𝑖𝑙𝑜𝑔ℎθ(𝑥𝑖) + (1 − 𝑦𝑖)log (1 − ℎθ(𝑥𝑖))) (6)

Where ℎθ(𝑥𝑖) is the probability that 𝑦𝑖 = 1.

 MSE and MAE are very similar in specification and result,

and take the following formats:

MSE: F(θ)=
1

2𝑚
∑(𝑦𝑖 − 𝑓θ(𝑥𝑖))

2
 (7)

MAE: F(θ)=
1

𝑚
∑|𝑦𝑖 − 𝑓θ(𝑥𝑖)| (8)

Each is meant to create a representative figure of the overall

distance between the true values of 𝑦𝑖 and its predicted value,

𝑓θ(𝑥𝑖). The main difference is that one corrects for negative

values by squaring the distance, the other by taking the

absolute value.

D. Evaluation Metrics

Each specification was evaluated by the following metrics:

1) Accuracy

A ratio of the number of correctly labeled test predictions

and the total number of test examples

2) Precision

For each classification c, a ratio of the number of labels

correctly predicted as c and the total number of labels

predicted as c, correctly or incorrectly.

3) Recall

For each classification c, a ratio of the number of labels

correctly predicted as c and the total number of labels whose

ground-truth label is c

4) Computation Time

Given a set of specifications, the amount of time in seconds

it takes for the sequential neural network to be instantiated,

fit to training data, validated, and finally tested.

III. MAJOR CHALLENGES AND SOLUTIONS

Our most pervasive challenge was managing the size of the

dataset, the computational cost of running many neural

network models, and the time required for our models to finish

running. To overcome this, we subset data, utilized

programming loops to try several different specifications at

once, and at point had to reduce the number of hidden layer

neurons.

During the experimental phase, we used a subset of 36,000

training examples and 4000 test samples while running

various experiments and did not estimate a model with the full

dataset until the end of our experimentation, when we believed

we had identified the most accurate and efficient specification.

We relied heavily on pythonic ‘loops’ to iterate through

different combinations of text embedder, activation functions,

optimizers, number of epochs and batch length. Rather than

evaluate each specification individually, summary statistics of

 3

performance was saved separately so that all model attempts

could be compared simultaneously.

At the beginning of the choosing loss functions, we came up

with three loss functions that are binary crossentrophy, mean

squared error and cosine similarity. However, we found out

cosine similarity can not be applied on polarity since the

interval is [0,1] instead of [-1,1]. By switching the loss function

to mean absolute error that measures the absolute average

distance between the real data and predicted data, we also have

a good comparison between accuracy under mean squared error

and mean absolute error
When evaluating models based on the final input layer, with

128 dimensions, we found that our computing platform (Google

Colab with active GPU) could not complete the estimation. We

remedied this by reducing the number of neurons in the hidden

layer by half, from 16 to 8.

Another major challenge is to match the results. For each

time we run the models, the result tables change drastically by

the rank based on accuracy. It’s nearly unpredictable to assume

which combination of activation functions and optimizer will

get the highest accuracy. In this paper, we analyzed using our

last results' numbers. This might be included in the future work,

which is to find a robust best model.

IV. MAJOR RESULTS & ANALYSIS

Each author used one of three pre-specified text embedding

models as a starting point. From there, the respective author

was responsible for experimenting further and interpreting

their results, with any specifications subject to change other

than the text embedder they started with.

A. google/nnlm-en-dim50

This model maps from text to 50-dimensional embedding

vectors. It takes a batch of sentences in a 1-D tensor of strings

as input and preprocesses its input by splitting into spaces.

The analysis results with this model were as follows. Firstly,

Binary Cross Entropy model performed much better than the

other two loss functions. The Binary Cross Entropy model’s

best accuracy was 0.84228, but the others' bests were 0.70053

and 0.73719. The results from the two other loss functions were

about the same because they used the same penalty mechanism,

the distance between the real value and predicted value, even

though one (Mean Squared Error) is about the squared term the

other (Mean Absolute Error) is about the absolute term. On the

result tables, these two models had especially low precision

values for 1 and recall values for 0, which meant there were a

lot of data, ground truth was 0 but predicted 1. This result

confirmed that Binary Cross Entropy function appropriated

more in classification problems because it gave penalties

infinity when model’s prediction was totally different class

from the original data.

Secondly, for the best combination of Activation functions

and Optimizers, there were no big differences in terms of

accuracy. However, about time, the model with SGD optimizer

shows good results overall. Because SGD does one update at a

time, it doesn’t have the redundancy. However, we need to

watch out to use this model because it is generally noisier than

typical Gradient Descent as it usually takes a higher number of

iterations to reach the minimum.

Because this model is our base model, I tried different batch

sizes and epochs with Binary Cross Entropy loss function. I

didn’t try this on other loss functions’ models because other

models’ accuracies were too low to beat the Binary Cross

Entropy loss functions’ results, and I couldn’t see a strong

upward trend on the validation accuracy that I could assure the

accuracy would go up with adding more iterations. I wanted to

make sure whether it didn’t converge because of lack of

repetition. However, when I decreased the batch size 512 to 300,

the best accuracy became worse, and the result was the same

when I increased epochs 5 to 7 as can be seen in Table Ⅰ~Ⅲ.

This could be caused by overfitting. In many cases among with

smaller batch size and more epochs, the model’s validation

accuracy decreased as the epoch increased.

B. google/nnlm-en-dim50-with-normalization

As a continuation of the previous layer, this layer is based on

NNLM with two hidden layers. Same with the 50-dimensional

layer, it takes a batch of sentences in a 1-D tensor of strings as

input. With normalization, it preprocesses its input by removing

punctuation and then splitting on spaces. In each model, the first

10000 data are used for validation and the rest are used for

training the models. Based on the experiments from the last

layer, the epochs is fixed to 5 and batch size is fixed to 512.

 The BinaryCrossentropy model performed the best among all

three loss functions with the highest accuracy equals to 86.09%

and the lowest accuracy equals to 82.85%. Under the

BinaryCrossentropy loss function, sigmoid and rmsprop is the

best combination with the high accuracy and highest precision

for polarity = 0. The second loss function is the mean squared

error. Sigmoid and rmsprop is still the best combination with

accuracy equals to 63.36%. The mean absolute error is the last

loss function that is trained. With the combination of relu and

adam, the accuracy is fairly low. Across all models, optimizer

sgd always gets the fastest running time.

C. google/nnlm-en-dim128-with-normalization

As described in its documentation and hinted at in its name,

this layer maps text to vectors of 128 dimensions. This

embedder was originally trained on the English Google News

200B corpus, using a Neural Net Language Model with three

hidden layers. The ‘normalization’ refers to a pre-processing

step where all punctuation is removed from the input text.

In each of the following models, half of the training examples

originally provided are used purely for training, the other half

for validation. The test examples remain as such and are not

subset further than described in Section III.

Beyond the input layer, the first model attempted has a single

hidden layer of 16 nodes, each with a ReLU activation function,

and a single node output layer. When compiled, it uses the

ADAM optimizer and a binary cross-entropy loss function. The

model fit estimation was done over 20 epochs, with a batch size

of 500 examples.

The number of epochs in this first experiment turned out to

be far too high. While the training accuracy continued to

improve until it was indistinguishably close to 1, the validation

 4

accuracy peaked after only 3 epochs at approximately 85%. The

final test accuracy was even less, around 81%, which was clear

evidence of overfitting. I suspect the relatively high

dimensionality of the input layer is what makes this

specification so prone to overfitting, but this is only an educated

guess.

The next set of models attempted used only 8 nodes in its

layers and 10 epochs, for two reasons. Firstly, was to reduce the

overfitting issue in the first attempt, and secondly because

repeatedly running models with 16 hidden layer nodes and 20

epochs would often cause our system (a Google Colab notebook

with GPU enabled) to crash.

In this step, the ReLU activation function was paired with the

three different optimizers: ADAM, RMSProp, and SGD. In

terms of predictive power (accuracy, precision, and recall), all

three specifications are very similar, with a slight edge to

RMSProp with a 5 percentage point lead in accuracy. The most

striking difference was in speed: ADAM was by far the slowest,

taking 104 seconds to complete, while RMSProp and SGD took

41 and 31 seconds, respectively.

With these results in mind, the same three optimizers were

paired with the sigmoid activation function in the hidden layer.

Results were similar to what was observed with ReLU, though

slightly less accurate, with the one exception that the SGD

optimizer performed much poorer in terms of accuracy, enough

to overshadow its 10 second lead in time to complete. The full

results for this and the previous set of models are displayed in

Table IX.

Finally, the previous experiments were repeated, with epochs

limited further to only 5. Performance was greatly reduced.

Predictions using the sigmoid activation function were, quite

literally, useless, and no better than simply guessing. These

results can be reviewed in Table X.

V. CONCLUSION AND FUTURE WORKS

Out of the three input layers, the middle one, 50-dimension

with normalization showed the best result. From this result, we

could say that compared to simple model, the model with

normalization worked better. However, because 128-dimension

with normalization was too complicated, it could not show

better results than 50 dimensional models.

Among all our trials, we chose the best model with a 50-

dimension with normalization input layer, 16 nodes in its

hidden layer (each with sigmoid activation), Binary Cross

Entropy as a loss function, SGD as the optimizer, 5 epochs, and

512 batch size. To decide the best model, first, we saw the

accuracy. There were five models with similar accuracy, around

0.86. These can be reviewed in Table XI Among them, we

chose the model with sigmoid activation and SGD optimization.

While its accuracy was only the second highest, this was

balanced out by its efficiency. There was only a 0.005

difference in accuracy, with a 9% decrease in the time to run.

 Using this best model, we run the whole data set, not the part

of it, 3,600,000. data for training and 400,000 data for testing.

In the end, our model’s accuracy was 0.766, which was lower

than expected. We expected to see at least above 80% because

all our small sample tested models showed over 85%. This

could be caused by overfitting because we used much more

training samples in this case.

 Finally, we compared our results with textblob’s one. We

found out that our model worked much better than the textblob

in terms of accuracy. textblob’s accuracy for our full test sets

was only 0.655. We could see that fine tuning with various

parameters could bring better results than automatic models.

Regarding time, textblob was better than our model. However,

this result could be expected because compared to our model,

textblob didn’t spend time to training the model, it is pretrained

and therefore didn’t have to deal with 3,600,000 data. A

detailed comparison is in Table XII

 After finishing our analysis, there were several things that we

wanted to analyze more in the future. Firstly, during the

analysis, we could see that our best model changed whenever

we run the codes. We tried to fix our train and test data when

we made small sample using random_state. However, still the

model picked up different data for fulfilling batch size and

epochs in every running. Also, the accuracy differences

between each model were small so it could be easily exceeded.

Therefore, for the further work, we can focus on making more

robust best model.

 Secondly, when we used MSE and MAE loss functions, we

could see that especially precision for 1 and recall for 0 showed

low value. In this analysis, we didn’t focus on this because our

focus was trying to find the best model with high accuracy.

However, for further research, we can try different thresholds

for our activation functions to get balanced precision and recall

values.

 Thirdly, in this analysis, we fixed many other options we

could try to set boundaries for our research, for instance, the

number of nodes on the hidden layer and the number of layers.

For further research, we can try other combinations for these.

In this analysis, we used 16 nodes on the hidden layer and could

see that our model was fast overfitted with 5 epochs and 512

batch sizes. If we change the number of nodes to a smaller size

overfitted as we did in the 128 dim model, then our model

would slowly be. In the contrast, if we add one more layer, then

we should decrease epochs or increase the batch size to prevent

overfitting (If we have same number of epochs, then smaller

batch size would lead more iterations). Another option that we

can consider is adding layers with a dropout rate. Also, in this

analysis, we didn’t touch the important hyperparameter,

learning rate. We could use this parameter later to do more fine

tuning.

 Lastly, we expected our model’s final accuracy to increase

more because training data for this model became 1,000 times

bigger. However, the accuracy decreased in contrast. For the

next analysis, we could focus on finding the clear reason for the

accuracy difference and why it even decreased.

 5

VI. TABLES

TABLE I

RESULT FROM NNLM-EN-DIM50/

(NODES=16, LOSS=BINARYCROSSENTROPY , EPOCHS = 5, BATCH_SIZE=512)

Activation Optimizer Accuracy
Precision Recall

Time
0 1 0 1

Sigmoid adam 0.842 0.85 0.84 0.84 0.86 34.0

Relu rmsprop 0.841 0.85 0.84 0.84 0.85 15.8
Sigmoid rmsprop 0.841 0.85 0.83 0.83 0.85 18.6

Relu adam 0.839 0.85 0.83 0.82 0.85 32.3

Sigmoid sgd 0.826 0.82 0.83 0.85 0.81 13.8
Relu sgd 0.800 0.80 0.81 0.81 0.79 16.1

TABLE Ⅱ

RESULT FROM NNLM-EN-DIM50/
(NODES =16, LOSS=BINARYCROSSENTROPY , EPOCHS = 5, BATCH_SIZE=300)

Activation Optimizer Accuracy
Precision Recall

Time
0 1 0 1

Sigmoid adam 0.835 0.84 0.83 0.84 0.83 52.3

Relu adam 0.833 0.84 0.83 0.83 0.84 35.5
Relu sgd 0.831 0.84 0.83 0.83 0.84 15.0

Sigmoid rmsprop 0.831 0.84 0.82 0.82 0.84 31.6

Sigmoid sgd 0.831 0.84 0.82 0.82 0.84 17.5
Relu rmsprop 0.826 0.83 0.82 0.82 0.84 29.7

TABLE Ⅲ

RESULT FROM NNLM-EN-DIM50/
(NODES =16, LOSS=BINARYCROSSENTROPY , EPOCHS = 7, BATCH_SIZE=512)

Activation Optimizer Accuracy
Precision Recall

Time
0 1 0 1

Sigmoid adam 0.833 0.84 0.83 0.83 0.84 31.7

Sigmoid sgd 0.831 0.83 0.83 0.84 0.83 17.5

sigmoid rmsprop 0.828 0.83 0.83 0.83 0.83 19.0
relu sgd 0.828 0.83 0.83 0.83 0.83 14.7

relu adam 0.826 0.83 0.82 0.82 0.83 29.0

Relu rmsprop 0.820 0.82 0.82 0.83 0.81 21.0

TABLE Ⅳ

RESULT FROM NNLM-EN-DIM50/

(NODES =16, LOSS=MEANSQUAREDERROR , EPOCHS = 5, BATCH_SIZE=512)

Activation Optimizer Accuracy
Precision Recall

Time
0 1 0 1

Sigmoid rmsprop 0.701 0.93 0.63 0.44 0.97 15.3
Relu rmsprop 0.649 0.91 0.59 0.33 0.97 21.4

Sigmoid adam 0.633 0.95 0.58 0.28 0.99 31.5

Relu sgd 0.618 0.96 0.57 0.25 0.99 13.0
Relu adam 0.617 0.92 0.57 0.26 0.98 25.7

Sigmoid sgd 0.611 0.97 0.56 0.23 0.99 16.0

TABLE Ⅴ
RESULT FROM NNLM-EN-DIM50/

(NODES =16, LOSS=MEANABSOLUTEERROR , EPOCHS = 5, BATCH_SIZE=512)

Activation Optimizer Accuracy
Precision Recall

Time
0 1 0 1

Relu rmsprop 0.737 0.89 0.67 0.54 0.93 18.9
Relu sgd 0.648 0.93 0.59 0.32 0.97 15.8

Sigmoid adam 0.641 0.96 0.58 0.3 0.99 25.6

Sigmoid sgd 0.635 0.97 0.58 0.28 0.99 13.3
Relu adam 0.607 0.93 0.56 0.23 0.98 29.1

Sigmoid rmsprop 0.603 0.93 0.56 0.22 0.98 18.1

TABLE Ⅵ

RESULT FROM NNLM-EN-DIM50-WITH-NORMALIZATION/
(NODES =16, LOSS= BINARYCROSSENTROPY, EPOCHS = 5, BATCH_SIZE=512)

Activation Optimizer Accuracy
Precision Recall

Time
0 1 0 1

Sigmoid rmsprop 0.861 0.86 0.86 0.86 0.86 19.2

Sigmoid adam 0.860 0.82 0.86 0.86 0.86 29.0
Relu rmsprop 0.860 0.85 0.87 0.87 0.84 15.8

Relu adam 0.857 0.84 0.87 0.88 0.83 31.6

Sigmoid sgd 0.855 0.85 0.86 0.86 0.85 14.3
Relu sgd 0.829 0.79 0.88 0.90 0.76 16.3

TABLE Ⅶ
RESULT FROM NNLM-EN-DIM50-WITH-NORMALIZATION/

(NODES =16, LOSS= MEANSQUAREDERROR , EPOCHS = 5, BATCH_SIZE=512)

Activation Optimizer Accuracy
Precision Recall

Time
0 1 0 1

Sigmoid rmsprop 0.634 0.98 0.58 0.28 0.99 21.4
Relu sgd 0.620 0.97 0.57 0.25 0.99 21.1

Sigmoid adam 0.620 0.98 0.57 0.25 0.99 23.2

Relu adam 0.603 0.97 0.56 0.22 0.99 26.5
Relu rmsprop 0.599 0.96 0.55 0.21 0.99 21.4

Sigmoid sgd 0.542 0.98 0.52 0.09 1.00 16.4

TABLE Ⅷ

RESULT FROM NNLM-EN-DIM50-WITH-NORMALIZATION/
(NODES =16, LOSS= MEANABSOLUTEERROR , EPOCHS = 5, BATCH_SIZE=512)

Activation Optimizer Accuracy
Precision Recall

Time
0 1 0 1

Relu adam 0.666 0.95 0.60 0.35 0.98 29.3

Relu sgd 0.635 0.95 0.58 0.29 0.98 16.1

Sigmoid adam 0.630 0.97 0.57 0.27 0.99 26.0
Sigmoid sgd 0.622 0.98 0.57 0.25 0.99 21.1

Sigmoid rmsprop 0.614 0.97 0.56 0.24 0.99 21.3

Relu rmsprop 0.609 0.95 0.56 0.23 0.99 15.7

TABLE Ⅸ

RESULT FROM NNLM-EN-DIM128-WITH-NORMALIZATION/

(NODES =8, LOSS= BINARYCROSSENTROPY, EPOCHS = 10, BATCH_SIZE=500)

Activation Optimizer Accuracy
Precision Recall

Time
0 1 0 1

Relu rmsprop 0.802 0.82 0.83 0.84 0.81 41
Sigmoid rmsprop 0.790 0.84 0.83 0.82 0.84 42

Relu adam 0.760 0.83 0.83 0.83 0.83 104

Relu sgd 0.752 0.82 0.82 0.82 0.82 32
Sigmoid adam 0.717 0.84 0.85 0.85 0.84 103

Sigmoid sgd 0.601 0.84 0.83 0.83 0.84 32

TABLE Ⅹ

RESULT FROM NNLM-EN-DIM128-WITH-NORMALIZATION/

(NODES =8, LOSS= BINARYCROSSENTROPY, EPOCHS = 5, BATCH_SIZE=500)

Activation Optimizer Accuracy
Precision Recall

Time
0 1 0 1

Sigmoid adam 0.502 0.50 1.0 0.0 49

Sigmoid rmsprop 0.502 0.50 1.0 0.0 31
Sigmoid sgd 0.498 0.50 0.0 1.0 31

Relu adam 0.499 0.82 0.86 0.87 0.81 44

Relu rmsprop 0.752 0.85 0.84 0.83 0.85 31
Relu sgd 0.616 0.85 0.79 0.77 0.86 31

TABLE Ⅺ

THE MODELS WITH THE HIGHEST ACCURACY
(ALL FROM NNLM-EN-DIM50/2 AND BINARYCROSSENTROPY LOSS FUNCTION)

Activation Optimizer Epochs Batchsize Accuracy Time

Sigmoid rmsprop 5 512 0.861 19.2

Sigmoid adam 5 512 0.860 29.0

Relu rmsprop 5 512 0.860 15.8
Relu adam 5 512 0.857 31.6

Sigmoid sgd 5 512 0.855 14.3

TABLE Ⅻ

FINAL COMPARISON

 Accuracy
Precision Recall Time

(minutes) 0 1 0 1

TextBlob 0.655 -- -- -- -- 4.73

TensorFlow 0.766 0.77 0.77 0.77 0.76 13.4

TENSORFLOW FINAL SPECIFICATION

ACTIVATION: SIGMOID, OPTIMIZER: SGD, EMBED: NNLM-EN-DIM50-WITH-
NORMALIZATION, NODES =16, LOSS= BINARYCROSSENTROPY, EPOCHS = 5,

BATCH_SIZE=512

 6

VII. CONTRIBUTIONS

A. Alex Hong

1) Writer

Sections IIB, III, IVB

2) Programmer/Analyst

Textblob, 50 Dimension with normalization

B. Jean Young Ghim

1) Writer

Sections IVA, Ⅴ, Ⅵ

2) Programmer/Analyst

50 Dimension Input Models

C. Kenneth Foster

1) Writer

Abstract, Sections I, II, IIA, IIC, IID, IVC

2) Programmer/Analyst

Data Loading, 128 Dimension Input Models

